S520 Homework 4

Enrique Areyan
 February 8, 2012

Chapter 5, Section 6, \#1:
(a) i. p is a real number
ii. P is a function with the following signature: $P: R \mapsto R$
iii. Z is a random variable, which means is a function, i.e., $Z: S \mapsto$ R. The sample space is usually $S=R$
(b) i. σ is a real number
ii. E is a real number (however, one can think of E also as a function from the set of all random variables to R).
iii. X is a random variable, which means is a function, i.e., $Z: S \mapsto$ R.
iv. μ is a real number

Chapter 5, Section 6, \#3:
(a) For f to be a p.d.f, it has to be the case that $f(x) \geq 0$ for all $x \in R$, and $\int_{-\infty}^{\infty} f(x) d x=1$. Therefore:
$1=\int_{0}^{\frac{3}{2}} c x d x+\int_{\frac{3}{2}}^{3} c(3-x) d x$
$=c\left\{\left|\frac{x^{2}}{2}\right|_{0}^{\frac{3}{2}}+\left|3 x-\frac{x^{2}}{2}\right|_{\frac{3}{2}}^{3}\right\}$
$=c\left\{\frac{9}{8}+\left[\left(9-\frac{9}{2}\right)-\left(\frac{9}{2}^{2}-\frac{9}{8}\right)\right]\right\}$
$=c\left\{\frac{9}{8}+\left[\frac{9}{2}-\frac{25}{8}\right]\right\}$
$=c\left\{\frac{9}{8}+\frac{9}{8}\right\}$
$=c \frac{9}{4} \Longrightarrow c=\frac{4}{9}$
(b) Graph of f :

By inspecting the graph of f, we can conclude that $E X=1.5$
One can also check this result using calculus:

$$
\begin{aligned}
E X & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x f(x) d x+\int_{0}^{1.5} x f(x) d x+\int_{1.5}^{3} x f(x) d x+\int_{3}^{\infty} x f(x) d x \\
& =0+\int_{0}^{1.5} x\left(\frac{4}{9} x\right) d x+\int_{1.5}^{3} x\left(\frac{4}{9}(3-x)\right) d x+0 \\
& =\frac{4}{9}\left\{\int_{0}^{1.5} x^{2} d x+\int_{1.5}^{3} x\left(3 x-x^{2}\right) d x\right\} \\
& =\frac{4}{9}\left\{\left|\frac{x^{3}}{3}\right|_{0}^{1.5}+\left|\frac{3 x^{2}}{2}\right|_{0}^{3}-\left|\frac{x^{3}}{3}\right|_{1.5}^{3}\right\} \\
& =\frac{4}{9}\left\{\left[\frac{3^{3}}{3}\right]+\left[\frac{3^{3}-3 \frac{3}{2}^{2}}{2}\right]-\left[\frac{3^{3}-\frac{3^{3}}{3}}{3}\right]\right\} \\
& =\frac{4}{9}\left\{\frac{9}{8}+\frac{81}{8}-\frac{63}{8}\right\} \\
& =\frac{4}{9}\left\{\frac{27}{8}\right\} \\
& =\frac{3}{2}=1.5
\end{aligned}
$$

(c)

$$
P(X>2)=1-\left(A_{(0,1.5)}+A_{(1.5,2)}\right)
$$

From the graph we know that $A_{(0,1.5)}=\frac{1}{2}$. Now, the area $A_{(1.5,2)}$ can be further decompose as $A_{r}+A_{t}$, where A_{r} is the area of the rectangle with base from 1.5 to 2 and height $f(2)$, i.e. $A_{r}=0.5 \cdot \frac{4}{9}=\frac{2}{9}$; and A_{t} is the area of the triangle with the same base and height $f(1.5)-f(2)$, i.e. $A_{t}=\frac{0.5 \cdot \frac{2}{3}-\frac{4}{9}}{2}=\frac{1}{18}$. Therefore:
$P(X>2)=1-\left(\frac{1}{2}+A_{(1.5,2)}\right)=1-\frac{1}{2}-A_{r}-A_{t}=\frac{1}{2}-\frac{2}{9}-\frac{1}{18}=\frac{4}{18}=\frac{2}{9}$
(d) Graph of Y and X

By inspecting the graph above one can conclude that $\operatorname{Var} Y>\operatorname{Var} X$
(e) The values of $F(x)$ were obtained by integrating $f(x)$ appropiately:
$F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{2}{9} x^{2} & \text { if } 0<x<1.5 \\ \left(\frac{4}{9}\left(3 x-\frac{x^{2}}{2}\right)\right)-1 & \text { if } 1.5<x<3 \\ 1 & \text { if } x>3\end{cases}$
With this function, we can calculate: $P(X>2)=1-F(2)=$ $1-\frac{7}{9}=\frac{2}{9}$. Same answer obtained in (c).

Graph of $F(x)$:

Chapter 5, Section 6, \#5:
(a) Picture of B (shaded area):

(b) The probability $P(X \leq 0.5)$ is the proportion of points that lie in the triangle from 0 to 0.5 relative to all points, i.e., $P(X \leq 0.5)=$ $\frac{\frac{1}{8}}{\frac{1}{8}+\frac{1}{8}+\frac{1}{4}}=\frac{\frac{1}{8}}{\frac{1}{2}}=\frac{2}{8}=\frac{1}{4}$. This result is confirmed by the c.d.f calculated for the next question.
(c)

To have a valid c.d.f for X, the values must go from 0 to 1 . Thus, we need to rescale the above graph. Using calculus, we want the are to sum to one, so we integrate and multiply by a constant $2 . F$ result
as follows:
$F(x)= \begin{cases}0 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x>1\end{cases}$

Graph of $F(x)$ for r.v. X

(d) No, X and Y are not independent.

To show that X and Y are not independent, let us work a counter example. By definition, $P(Y=y \in(0.75,1) \mid X \in(0,0.5))=0$, but $P(Y=y \in(0,0.5))>0$. Hence, the two r.v. are not independent.

Chapter 5, Section 6, \#7:

$$
X \sim \operatorname{Normal}(\mu=-5, \sigma=10)
$$

(a)

$$
\begin{aligned}
P(X<0) & =P\left(\frac{X-\mu}{\sigma}<\frac{0-\mu}{\sigma}\right) \\
& =P\left(Z<\frac{5}{10}\right) \\
& =P\left(Z<\frac{1}{2}\right) \\
& =\operatorname{pnorm}(0.5)=0.6914625
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(X>5) & =P\left(\frac{X-\mu}{\sigma}>\frac{5-(-5)}{10}\right) \\
& =P(Z>1) \\
& =1-P(Z \leq 1) \\
& =1-\operatorname{pnorm}(1)=0.1586553
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(-3<X<7) & =P\left(\frac{-3+5}{10}<Z<\frac{7+5}{10}\right) \\
& =P\left(\frac{1}{5}<Z<\frac{6}{5}\right) \\
& =P\left(Z<\frac{6}{5}\right)-P\left(Z<\frac{1}{5}\right) \\
& =\operatorname{pnorm}(1.2)-\operatorname{pnorm}(0.2)=0.3056706
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(|X+5|<10) & =P(-10<X+5<10) \\
& =P(-15<X<5) \\
& =P(X<5)-P(X<-15) \\
& =P(Z<1)-P(Z<-1) \\
& =\operatorname{pnorm}(1)-\operatorname{pnorm}(-1)=0.6826895
\end{aligned}
$$

(e)

$$
\begin{aligned}
P(|X-3|>2) & =P(X-3>2 \text { or } X-3<-2) \\
& =P(X-3>2)+P(X-3<-2) \\
& =1-P(X<5)+P(X<1) \\
& =1-P(Z<0)+P(Z<-0.4) \\
& =1-\operatorname{pnorm}(0)+\operatorname{pnorm}(-0.4)=0.8445783
\end{aligned}
$$

Chapter 6, Section 4, \#2:
(a) f is a p.d.f iff $f(x) \geq 0, \forall x \in R$, and $\int_{-\infty}^{\infty} f(x) d x=1$. Therefore,

$$
\begin{aligned}
1 & =\int_{0}^{1} c x d x+\int_{1}^{2} c d x+\int_{2}^{3} c(3-x) d x \\
& =c\left|\frac{x^{2}}{2}\right|_{0}^{1}+c|x|_{1}^{2}+c\left|3 x-\frac{x^{2}}{2}\right|_{2}^{3} \\
& =\frac{c}{2}+\{2 c-c\}+\left\{9 c-\frac{9 c}{2}-6 c+2 c\right\} \\
& =\frac{c}{2}+c+5 c-\frac{9 c}{2} \\
& =-4 c+6 c \Longrightarrow 2 c=1 \Longrightarrow c=\frac{1}{2}
\end{aligned}
$$

(b) $P(1.5<X<2.5)$. To answer this question I first compute the c.d.f of f. Using calculus:

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{x^{2}}{4} & \text { if } x \in[0,1] \\ \frac{x}{2}-\frac{1}{4} & \text { if } x \in[1,2] \\ \frac{1}{2}\left(3 x-\frac{x^{2}}{2}\right)-\frac{5}{4} & \text { if } x \in[2,3] \\ 1 & \text { if } x>3\end{cases}
$$

$$
\begin{aligned}
P(1.5<X<2.5) & =P(X<2.5)-P(X<1.5) \\
& =F(2.5)-F(1.5) \\
& =\frac{1}{2}\left(3 \frac{10}{4}-\frac{\left(\frac{10}{4}\right)^{2}}{2}\right)-\frac{5}{4}-\left(\frac{1}{2} \frac{3}{2}-\frac{1}{4}\right) \\
& =0.4375
\end{aligned}
$$

(c) By inspecting the graph of f, one can easily see that $E X=\frac{3}{2}$. This result is confirmed by calculus:

$$
\begin{aligned}
E X & =\int_{0}^{1} \frac{x^{2}}{2} d x+\int_{1}^{2} \frac{x}{2} d x+\int_{2}^{3} \frac{1}{2}\left(3 x-x^{2}\right) d x \\
& =\left|\frac{x^{3}}{6}\right|_{0}^{1}+\left|\frac{x^{2}}{4}\right|_{1}^{2}+\left|\frac{1}{2}\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{2}^{3} \\
& =\frac{1}{6}+\frac{3}{4}+\left\{\frac{1}{2}\left[\left(\frac{3^{3}}{2}-\frac{3^{3}}{3}\right)-\left(\frac{3\left(2^{2}\right)}{2}-\frac{2^{3}}{3}\right)\right]\right\} \\
& =\frac{11}{12}+\left\{\frac{1}{2}\left[\frac{3^{4}-3^{2} 2-3^{2} 2^{2}+2^{4}}{6}\right]\right\} \\
& =\frac{11+81-54-36+16}{12}=\frac{92-90+16}{12}=\frac{18}{12}=\frac{3}{2}
\end{aligned}
$$

(d) Using the c.d.f of f previously calculated, the answer is $F(1)=\frac{1}{4}$
(e) We want to find y such that $F(y)=0.9$. Solving this equation is equivalent to solving the following quadratic equation:

$$
-\frac{x^{2}}{2}+3 x-4.3=0
$$

Out of the two roots, the appropiate answer is approximately 2.367544467
Chapter 6, Section 4, \#6:
(a) $P(X<7.5)=\frac{7.5-5}{15-5}=\frac{2.5}{10}=0.25 \Longrightarrow q_{1}=7.5$ $P(X<12.5)=\frac{12.5-5}{15-5}=\frac{7.5}{10}=0.275 \Longrightarrow q_{3}=12.5$
$\operatorname{iqr}(X)=q_{3}-q_{1}=12.5-7.5=5$
The standard deviation of X is $\sigma=\sqrt{225}=15$. The ratio is $\frac{5}{15}=\frac{1}{3}$
(b) The quantile q_{1} of Y is $\operatorname{qnorm}(.25,10,15)=-0.1173463$

The quantile q_{3} of Y is $\operatorname{qnorm}(.75,10,15)=20.11735$
$\operatorname{iqr}(Y)=20.11735+0.1173463=20.23469$.
The standard deviation of X is $\sigma=\sqrt{225}=15$. The ratio is $\frac{20.23469}{15}=1.34898$

